
Under review as submission to TMLR

Low-Rank Tensor-Network Encodings for Video-to-Action
Behavioral Cloning

Anonymous authors
Paper under double-blind review

Abstract

We describe a tensor-network latent-space encoding approach for increasing the scalabil-
ity of behavioral cloning of a video game player’s actions entirely from video streams of
the gameplay. Specifically, we address challenges associated with the high computational
requirements of traditional deep-learning based encoders such as variational auto-encoders
that prohibit their use in widely available hardware or for large scale data. Our approach
uses tensor networks instead of deep variational autoencoders for this purpose, and it yields
significant speedups with no loss of accuracy. Empirical results on ATARI games demon-
strate that our approach leads to a speedup in the time it takes to encode data and train
a predictor using the encodings (between 2.6× to 9.6× compared to autoencoders or varia-
tional autoencoders). Furthermore, the tensor train encoding can be efficiently trained on
CPU as well, which leads to comparable or better training times than the autoencoder and
variational autoencoder trained on GPU (0.9× to 5.4× faster). These results suggest signif-
icant possibilities in mitigating the need for cost and time-intensive hardware for training
deep-learning architectures for behavioral cloning.

1 Introduction

Learning by imitation is a paradigm that enables teaching complex tasks through observation of expert
behavior (Hussein et al., 2017) including object manipulation (Shen et al., 2022), robotic locomotion (Wang
et al., 2022), and autonomous driving (Bronstein et al., 2022). Several approaches for learning from data
have been proposed, including behavioral cloning and inverse reinforcement learning.

In this work, we consider the task of learning directly from expert demonstrations in the form of action and
video-frame sequences. In this context, learning directly from raw pixel data is computationally challenging
due to the high resolution of game frames. This challenge is often addressed via downsampling and usage of
large-scale computational resources. An illustrative example is the OpenAI VPT (Baker et al., 2022) for the
game of Minecraft, which first downsamples the original frame size of 640× 360 to 128× 128. Furthermore,
the model is trained using 70, 000 hours of gameplay, has half a billion parameters, and is trained for nine
days on 720 V100 GPUs.

One approach to tackle the computational challenges of using raw video frames as input is to provide hand-
tuned features (such as movement, location, terrain, visibility, etc.) rather than, or in addition to, raw
pixel data. With this additional information, important elements of the game are provided and thus do not
have to be learned solely from video data. This is the approach taken by some reinforcement learning and
imitation learning works, such as OpenAI et al. (2019) for Dota 2 and Vinyals et al. (2019) for Starcraft II.
However, such an approach requires human effort and insight in identifying traits that would be useful for a
learning algorithm and developing a means for extracting this data. As an alternative to using hand-crafted
features, there have been various approaches proposed for learning a latent space representation via self-
supervised learning, where auxiliary tasks are used to train a neural network that maps high-dimensional
input data into a lower dimensional space (Chen et al., 2021b). In this setting, autoencoder-based deep
learning architectures have been a common method of choice for identifying this latent space (Jaques et al.,

1



Under review as submission to TMLR

2021; Brown et al., 2020; Chen et al., 2021a;b; Amini et al., 2018), although other approaches have also been
explored (Sermanet et al., 2017; Pari et al., 2021; Chen et al., 2021b).

In this work, we replace latent space extraction via a more computationally efficient tensor network approach,
based on the Tensor Train (TT) format (Oseledets, 2011). The TT-format offers a multi-linear approximation
that can be tuned to have a target reconstruction accuracy without the need of extensive hyperparameter
tuning. Furthermore, the recent development of an incremental algorithm, TT-ICE∗ (Aksoy et al., 2022),
allows us to compute TT-decomposition of a large amount of video data faster and with less memory than the
standard TT-SVD algorithm — a critical enabling innovation for this application. TT-ICE∗ computes the TT-
decomposition entirely using basic linear algebra operations such as matrix multiplication and decomposition.
Furthermore, it only requires a single pass through the data, a significant advantage over backpropagation
techniques that can require multiple passes through the training data and do not guarantee any representation
accuracies. The lack of guarantees on representation accuracy by deep-learning architectures also leads to
the need for validation-data driven hyperparameter tuning to find hyperparameters and architecture settings
that lead to high-quality representations. Instead, the complexity of the representation of our approach,
represented by the tensor rank, can be guaranteed and found adaptively via the TT-ICE∗ algorithm.

While the TT-format may be viewed as having a smaller representational capacity compared to the nonlin-
ear architecture of neural networks, there is evidence suggesting that neural networks might exhibit more
expressiveness than required for specific tasks. Several works have found that some layers of trained neural
networks can be replaced with tensor networks with little to no degradation of accuracy while improving
the computational and memory costs of running these networks (Novikov et al., 2015; Garipov et al., 2016;
Yu et al., 2017b; Kim et al., 2016; Lebedev et al., 2015; Sharma et al., 2021). In our work, we test whether
encodings provided by neural networks can similarly be replaced by tensor networks. However, in contrast
to the above works, we train the tensor network encodings directly, instead of first training a neural network
encoding then replacing it (or components of it) with tensor networks.

In this paper, we demonstrate that this approach does provide a practical and highly effective alternative
to deep-learning based encodings by reducing the requirements of hyperparameter tuning, thereby offering
shorter training times for behavioral cloning. Moreover, the TT-encoding-based predictors achieve similar
or higher behavioral cloning accuracies than predictors built on encodings from an convolutional autoen-
coder (AE) or variational autoencoder (VAE) (Kingma & Welling, 2014). Although other neural network
approaches for feature extraction are available (see Chen et al. (2021b) for examples), we chose AEs and
VAEs since like the TT, these are trained to minimize a loss that is related to reconstruction error.

To summarize, our contributions are as follows:

1. Empirical demonstration that the low dimensional embeddings obtained through TT-ICE∗ can be
used for the downstream task of behavioral cloning.

2. Empirical demonstration of a reduction in training time (2.6 − 9.6× faster when trained on
GPU), while achieving comparable behavioral cloning accuracy and gameplay scores compared to
autoencoder-based approaches for extracting a latent space.

2 Related Work

In machine learning literature, AEs and VAEs are commonly used as feature extraction tools. Polic et al.
(2019) uses a convolutional autoencoder (CAE) to extract features from images of a tactile sensor. The
extracted features are then used to estimate contact object shape, edge position, orientation and indentation
depth using shallow neural networks. Yu & Zhou (2020) extracts features from gearbox vibration data using
CAE and uses the extracted features to identify fault modes. Pintelas et al. (2021) uses CAE to compress
and de-noise high dimensional images to smaller size and then uses the encoded images for classification,
Zabalza et al. (2016) uses a stacked AE to extract features from hyperspectral images and uses those features
in classification, and Cai et al. (2022) uses AE-extracted-features to determine the level of traffic congestion
from video frames.

2



Under review as submission to TMLR

There is also increased attention to transformer based methods. Yang et al. (2022) uses a transformer encoder
to generate pair-wise relations for the objects in the image and uses a transformer decoder to generate
captions. Kim et al. (2021) uses a transformer based architecture as feature extraction step in dual arm
robot manipulation. However, training complex architectures like transformers increases the computational
cost and data requirements even further. In Kim et al. (2021), it is reported that 8 NVIDIA V100 GPUs
were used in training.

In addition to neural network-based tools, tensor methods have also been considered as a feature extraction
option in machine learning literature. Tensor methods allow the extraction of meaningful features using
linear algebra operations, therefore eliminating the need for backpropagation. Taherisadr et al. (2019) uses
CANDECOMP/PARAFAC (CP) format to reduce the size of EEG signals and increase the computational
efficiency of a CNN-based seizure predictor. Zhang et al. (2017) use Tucker format to extract features from
PCG signals and a support vector machine based classifier to identify anomalous heart sounds. Fonał &
Zdunek (2019) use TT-format to extract features from various multidimensional datasets and a k-nearest
neighbor classifier to perform multi-class-classification. Zhao et al. (2020) use a TT layer to extract features
from high-dimensional video data before passing those features into a recurrent neural network for the task
of video summarization.

Although tensor methods and neural networks are both capable of feature extraction, there is the question of
whether the nonlinearity of neural networks can lead to features that are better suited for downstream tasks
than the multilinear tensor methods. Previous studies indicate that the increased expressiveness of neural
networks might be excessive for certain tasks and computationally expensive compared to similar tensor-
based methods. Several works have explored compressing portions of large neural networks after training,
including fully connected layers (Novikov et al., 2015) and convolutional layers (Garipov et al., 2016; Yu
et al., 2017b; Kim et al., 2016; Lebedev et al., 2015; Sharma et al., 2021). The fine-tuning of large pre-
trained neural networks can also be simplified by exploiting low rank structure; Hu et al. (2022) explores
using low-rank matrices to update the weights of large language models when fine-tuning these models
for downstream tasks. Other work has also explored using tensor operations directly within the network
architecture itself during training as a means for parameter reduction and model compression; examples
include Tensor Contraction Layers (Kossaifi et al., 2017), Tensor Regression Layers (Kossaifi et al., 2020),
and Higher-Order Tensor RNNs (Yu et al., 2017a). The ability to replace portions of deep neural networks
with tensor networks either during or after training suggests that alternative representations may exist that
do not require as much computational power and time to train, while not sacrificing accuracy.

In this work, we explore using a tensor network in TT-format as one such alternative representation, where
the TT is used to extract features from video frame data for behavioral cloning. In comparison to using neural
network based encodings like convolutional AEs and VAEs, we show that using a TT leads to significantly
faster training times without sacrificing behavioral cloning accuracy.

3 Methodology

The overarching objective of this work is to extract a game-specific playing strategy from video demonstra-
tions of an experienced agent. In this section we first describe our learning framework; then we present
the methods to extract a low-dimensional representation and discuss how TT-decomposition fits within this
setting. Finally, we briefly present the action predictor that maps latent representations to actions.

The imitation learning framework we use is shown in Figure 1. It consists of two parts: an encoding trans-
formation (labeled “Frame encoder” in Figure 1) and an action predictor (“Action predictor” in Figure 1).
The encoding transformation serves to reduce the dimensionality of the space so that the action predictor
can potentially be learned more efficiently. In this paper we aim to accelerate computation of the encoding
transformation.

The encoder works by mapping frames of a video sequence into an L dimensional latent-space. We compare
three such encoders in this work: two neural network-based encoders determined from an AE and VAE,
and a low-rank encoder based on the TT-decomposition. The dimensionality of the latent space is typically
determined by the formulation of the encoding transformation. For example, AEs and VAEs would treat

3



Under review as submission to TMLR

this as a hyperparameter over which to optimize, whereas our low-rank approach will adaptively determine
this dimension to a user-specified error tolerance. We further note that each of the three methods outlined
above also have an ability to reconstruct an image from the latent space, which potentially can be useful for
investigating the latent space.

...

RGB
images

TT
AE

VAE

Frame
encoder

Encoding Stacked
encodings

...

...

Action
predictor

Action(s)

Figure 1: Imitation learning framework. Our focus is to enhance latent space learning depicted by the blue
box. We compare the TT, autoencoder (AE) and variational autoencoder (VAE) approaches. Orange cubes
represent images from gameplay videos. The extracted latent features are then used in the action-prediction
network to predict actions. The architecture of the action predictor remains the same for all three encoding
methods.

In the rest of this section, we will discuss the methods and tools to compute the latent space representation
of the gameplay sequences efficiently in detail.

3.1 Frame Encoder

This section discusses three alternatives that we consider as frame encoding methods. We will first briefly
introduce AE and VAE and then discuss our TT-based approach in detail.

As mentioned in Section 1, AEs and VAEs have found great use for extracting encodings in the context of
imitation learning and behavioral cloning. However, low-rank tensor decompositions have not been widely
used for this purpose.

3.1.1 Autoencoder

AEs are a neural network based latent space extraction tool. AEs are used for a variety of tasks, including di-
mensionality reduction(Wang et al., 2016), denoising(Majumdar, 2018), and image compression(Sreelakshmi
& Ravi, 2020). AEs consist of two parts: an encoder and a decoder. The encoder takes the input data and
maps it to a latent space representation. The decoder then takes the latent space representation and maps
it back to the original data. The goal of the AE is to learn a mapping that minimizes the difference between
the original data and the reconstructed data.

AEs are a powerful tool for unsupervised learning, and they can be used to extract meaningful features from
data without any prior knowledge. However, AEs can be computationally expensive to train, and they can
be sensitive to the choice of hyperparameters.

3.1.2 Variational Autoencoder

VAEs (Kingma & Welling, 2014) are similar to AEs in utilizing an encoding and decoding network. However,
instead of mapping a fixed input to a fixed latent vector, the input is mapped probabilistically to a latent
vector z. A benefit of VAEs is that it is a generative model, allowing one to generate new samples by
sampling latent vectors z (typically) from a standard normal distribution and passing it through the decoder.
An additional potential benefit is that the training of a VAE imposes some structure onto the latent space,
as the latent space is trained to be normally distributed.

4



Under review as submission to TMLR

The AE and VAE are both implemented using an encoder consisting of four convolutional layers, followed
by a flattening layer and a final linear layer, and a decoder consisting of a linear layer, a reshaping layer,
and four transposed convolutional layers. Additional details on the architecture and training of the AEs and
VAEs can be found in Appendix A.1.

3.1.3 Tensor-Train (TT) Format

The TT is a compact representation method for multi-dimensional arrays. A d-dimensional tensor
X ∈ Rn1×n2×···×nd is said to be in TT-format if it is represented as a product of d 3-dimensional ten-
sors {Gi}d

i=1, Gi ∈ Rri−1×ni×ri , called TT-cores. The internal dimensions ri of TT-cores Gi are also referred
to as TT-ranks and are determined by error-truncated SVDs through a user-specified relative error tolerance
ε ∈ [0, 1], except for r0 = rd = 1.

In the case of RGB images, a video sequence is a 4-dimensional tensor X ∈ SH×W ×C×N with S = [0, 255].
The first three dimensions correspond to the height (H), width (W), and color (C) channels; and the last
dimension corresponds to the index of an individual image within the video sequence.

In the video application considered in this paper, we first reshape X into a 6-way tensor of shape n1 × . . .×
n5×N , where

∏5
i=1 ni = HWC. By reshaping X to have smaller dimensions, we aim to limit the maximum

TT-rank for each dimension. This also results in a slower growth in overall TT-ranks and yields higher
compression. After reshaping, the tensor of a video sequence is represented in TT-format as

X ≈ G1 3×1 G2 3×1 · · · 3×1 G6, (1)

where A 3×1 B denotes the tensor contraction between the third dimension of A and first dimension of B,
and Gi ∈ Rri−1×ni×ri .

Note that in Equation 1, the first 5 TT-cores, G1, . . . ,G5, correspond to reshapings of the H, W, and C of
the images – these are common to all images. The final dimension indexes the unique frame and therefore
only the final core is unique to a data point. To be more specific, for the i-th image stored in X , we would
have the reconstruction

X (i) ≈ G1 3×1 · · · 3×1 G5 3×1 G6[:, i], (2)

where G6[:, i] denotes the i-th column of G6. As a result of this, we can use the representations stored in G6
as encodings of the frames and the fifth TT-rank, r5, becomes the size of the latent space L.

One of the methods to compute a TT-decomposition for d-dimensional arrays is the TT-SVD algorithm (Os-
eledets, 2011, Alg. 1). This algorithm returns an approximation X̃ that satisfies the inequality ∥X − X̃∥F ≤
εdes∥X∥F for some predefined relative error upper bound εdes. Moreover, when computed with TT-SVD, the
first 5 TT-cores consist of reshapings of orthonormal vectors (i.e., left singular vectors). However, perform-
ing the TT-SVD on large tensors requires loading the full tensor into memory and performing a sequence of
singular value decompositions. As a result, this approach requires a significant amount of memory. The
memory of our existing computational resources limits us to a maximum number of around 30,000 frames
for TT-SVD.

One way to reduce the memory and computational requirements of TT-SVD is adopting an incremental
approach. TT-ICE∗ (Aksoy et al., 2022, Alg. 3.2) is an incremental algorithm that computes the TT-
decomposition for a stream of tensors with a given target accuracy. To train the tensor network, we create
batches of 2500 frames from gameplay sequences and update the basis vectors stored in TT-cores using
TT-ICE∗ . Although TT-ICE∗ does not require a fixed batch size as shown in Aksoy et al. (2022), we
train the tensor network using a fixed batch size to mimic the training of the NN based methods. Once
a pass is completed over a batch of images, their latent representations are stacked to G6. Also note that
TT-ICE∗ explores and increases the number of the basis vectors for each dimension of the tensor stream
adaptively based on the user-specified error tolerance. This removes the need to manually tune the size of
the latent space L for the encoded images. Next, we discuss how out-of-sample gameplay frames are mapped
to the latent space by each encoding method.

5



Under review as submission to TMLR

3.2 Mapping unseen data to latent space

For AE/VAE, the latent space representation of unseen data is acquired directly through a forward pass of
the trained encoder with the desired image. On the other hand for TT, the notion of forward pass is replaced
with sequential projection onto cores.

Note that the first 5 TT-cores contain reshaped orthonormal vectors when TT-cores are trained with
TT-ICE∗ . We obtain ri orthonormal vectors for each dimension by reshaping the first 5 TT-cores as

Ui = reshape (Gi, [ri−1ni, ri]) . (3)

These orthonormal vectors are then used to encode any new images from the same game type. We obtain the
latent embedding of images by simply projecting the appropriately reshaped images onto Ui. The pseudocode
of this procedure is provided in Algorithm 11.

The AE, VAE, and TT all allow for reconstructing frames from the latent space. As such, we can visualize
the reconstructed frames to get a sense of what is lost in encoding the frames. Figure 2 shows an example
of reconstructed frames from the latent space for each encoding method.

Algorithm 1 Mapping unseen data to latent space by orthogonal projections onto TT-cores
1: Input
2: {Gi}5

i=1 TT-cores trained with TT-ICE∗

3: Yj ∈ Rn1×···×n5×Nj j-th batch of frames that contain Nj frames to be projected
4: Output
5: gj ∈ Rr5×Nj encodings of the j-th batch of frames
6: gj ← reshape (Yj , [n1, n2 . . . n5Nj ])
7: for i = 1 to 4 do
8: U ← reshape (Gi, [ri−1ni, ri]) ▷ Note that for i = 1 we have r0 = 1
9: gj ← UT gj

10: gj ← reshape (gj , [rini+1, ni+2 . . . Nj ])
11: end for
12: U ← reshape (G5, [r4n5, r5])
13: gj ← UT gj

Tensor Train Autoencoder VAE Original

Figure 2: Example reconstruction of a Ms.Pac-Man frame using TT (with ε = 0.01), AE and VAE. TT
reconstruction is visually the most similar to the original frame. The size of the latent space for all three
models is 11583, which is 11.5% of the original size (210× 160× 3).

3.3 Action predictor

To extract the game-specific playing strategy, we employ a simple MLP based architecture. We stack the
latent representation of the last 4 frames together and obtain a 4L vector as input to the action predictor.

1This algorithm is adapted from Aksoy et al. (2022)

6



Under review as submission to TMLR

Then the action predictor outputs the predicted action for a given timestep. Using the previous four frames as
input allows the model to use some amount of temporal information and is a common choice for experiments
conducted on Atari games (see, e.g., Mnih et al. (2013)).

The action predictor consists of 5 hidden layers with 50 neurons each. Every hidden layer is then followed
by a batch norm and ReLU operation. Finally, the output layer has size equal to the number of possible
actions for each game, which is interpreted as the probability of taking each action. Next, we present the
computational experiments we have conducted.

4 Experiments

In this section, we describe our comparative study, the dataset we selected for the experiments, evaluation
metrics we used, and results we obtained.

4.1 Dataset

The dataset consists of game frames from demonstrations from a set of Atari games, in particular: Beam-
Rider, Breakout, MsPacman, Pong, Qbert, Seaquest, and SpaceInvaders. Our data is collected using trained
Deep Q-Networks (Mnih et al., 2015), which are obtained from the RL-Baselines Zoo package (Raffin, 2018)
and further trained using the Stable Baselines platform (Hill et al., 2018) for 107 samples (states and actions),
using the tuned hyperparameters from RL-Baselines Zoo. Rather than use downsized grayscale 84× 84× 1
images (before stacking) as is often done in the literature, we instead use the original full-sized RGB images
(210 × 160 × 3), since our work deals directly with image compression and dimensionality reduction. For
each game, we generate 200 trajectories, a subset of which is used as a training set and a subset of which is
used as a validation set. More details about the split are given in Section 4.2. Another 50 trajectories are
generated as a test set, which is used to evaluate the action prediction accuracy of the final trained models.
We define a trajectory as a sequence of states (frames), rewards, and actions taken by the RL agent, starting
at the beginning of the game and ending when the RL agent loses a life in the game or the end of the game
is reached. The dataset can be found at Chen (2023).

4.2 Setup

The procedure for our experiments is as follows:

1. Train an AE, VAE, and TT on the frames from a set of gameplay videos. The dimensionality of
the latent space L for the TT is determined automatically by TT-ICE∗ . The dimensionality of the
latent space for AE and VAE is then fixed to be equal to L in order to provide a fair comparison of
the methods.
Furthermore, the VAE and AE are trained using a range of L2 regularization coefficients and initial
learning rates.

2. For the AE and VAE, an additional portion of the gameplay videos are held out for validation.
The validation reconstruction errors are used to select a VAE and AE for encoding. Note that for
TT-decomposition no such validation procedure is needed.

3. Using the encodings generated by the TT or the AE / VAE as input, we train simple feed-forward
networks to predict the actions taken by the trained reinforcement learning agent from which data
is generated, using a range of hyperparameters.

4. For each of the AE, VAE, and TT encodings, we select the predictor that yields the lowest validation
action prediction loss, as measured by cross-entropy loss on a separate validation set.

In our work, we consider training the AE, VAE, and TT separately to first learn an encoding, before training a
predictor on the encodings directly. This is in contrast to end-to-end approaches, where the encodings would
be trained jointly with the predictors. An advantage of training the encoders separately from the action

7



Under review as submission to TMLR

Limited Data Moderate Data
Training Set for Training Encoder and Predictor 5 160

Validation Set for Selecting Best Encoder (ONLY AE/VAE) 1 20
Validation Set for Selecting Best Predictor 1 20

Test Set for Evaluating Final Models 50 50

Table 1: Summary of the number of trajectories used to train the models in the limited and moderate data
cases. Note that each row corresponds to separate trajectories.

predictors is reduced training time, as the expensive encoders are not further finetuned for the particular task
of behavioral cloning. A second advantage is that the encodings are smaller than the full frames, leading to
lower memory and storage requirements. This approach mimics the approach taken in several reinforcement
learning papers, which have found that decoupling training an encoder from training the reinforcement
learning agent is an effective approach - examples include Pari et al. (2021); Parisi et al. (2022); Stooke et al.
(2021); Yuan et al. (2022); Shah & Kumar (2021).

The predictors and AE / VAE were set up and trained using PyTorch and trained on NVIDIA Tesla V100
GPUs. The TT is trained either using GPU (TT-GPU, NVIDIA Tesla V100) or CPU (TT-CPU, Intel Xeon
Gold 6154 processors), using the TT-ICE* package - timings are reported for both. Note that the only
difference between TT-GPU and TT-CPU is the device that the computation took place. In parallel to
the findings in Aksoy et al. (2022), we have empirically found that this approach is most effective when
ni = O(10) for i = 1, . . . , 5 and therefore reshaped the image batches to 15× 14× 16× 10× 3×N .

In this work, we consider two cases: 1) a limited data regime where only 5 gameplay trajectories are used
as training data for each game and 2) a moderate data regime where 160 gameplay trajectories are used as
training data for each game. A summary of the number of trajectories used in the limited and moderate data
settings is shown in Table 1. In addition to these two scenarios, we also provide a more detailed investigation
on the effects of changing the latent space size (Appendix A.4) and the amount of training data (Appendix
A.5) on action prediction accuracy and computational speedup.

Action predictors are trained with the Adam-W optimizer with a cosine learning rate decay for fifty epochs
in the low data case and five epochs in the moderate data case. These predictors are trained using the same
range of initial learning rates and weight decay penalties as the ones used to train the AE and VAE encoders
(shown in Appendix A.1). An additional 1 or 20 trajectories (in the limited and moderate data regimes,
respectively) not used during training are then used as a validation set to evaluate the trained predictors,
with the predictors yielding the lowest cross-entropy action prediction loss selected.

We also include the results of a predictor trained using the original, full-sized RGB frames, of dimension
210 × 160 × 3. Because the “no encoding” predictor uses the full-sized images, it is expected that these
accuracies will be higher than the predictors using the encodings - these are included as a comparison as an
upper bound on accuracy we can expect.

Additional details on training and the neural network architectures can be found in the Appendix A.1.

4.3 Metrics

We compare performance of the methods using three metrics: training time, action prediction accuracy, and
normalized gameplay score. We then report the averaged results for each of those metrics for each regime in
Section 4.4.

Training Time. We compare the time required to train each framework against the time needed to train
a predictor on full frames.

Reconstruction Quality. We measure the reconstruction quality of the TT against an AE and VAE
using peak-signal-to-noise ratio (PSNR) and mean-squared error (MSE) as metrics.

8



Under review as submission to TMLR

Action prediction accuracy. We compare the accuracy of the actions suggested by each framework to
actions taken by the RL agent.

Normalized gameplay score. We normalize gameplay scores achieved by each framework so that a
score of 0 corresponds to performance of an agent taking random actions and a score of 1 corresponds to
performance of the RL agent. In particular, given the score s achieved by a behavioral cloned agent, the
mean score sRL achieved by the RL agent and the mean score srandom achieved by an agent taking random
actions, we calculate the normalized score to be

snormalized = s− srandom

sRL − srandom
.

The training time for each framework can further be broken down into the time it takes to train the encoder,
the time it takes to encode the data, and the time it takes to train the action predictor given the encodings.
These results are shown in Appendices A.2 and A.3.

4.4 Results

4.4.1 Limited Data Regime

The benefits of bypassing the need for training a neural network encoder can be observed in the total training
time of the different methods, as shown in Figure 3. In particular, the training time of the TT-based predictor
trained on GPU (TT-GPU) is 8.2× to 9.6× faster compared to the AE and VAE-based predictors and 26.1×
to 29.7× faster compared to the predictor trained with no encoding. When the TT encoding is trained on
CPU (but with the predictor still trained on GPU), the TT-predictor is still 3.3× to 5.4× faster than the AE
and VAE predictors trained on GPU and 10.4× to 17.5× faster than the predictor trained with no encoding.

AE VAE TT-CPU TT-GPU

BR B MP P Q S SI
0
5

10
15
20
25
30

Sp
ee

du
p

vs
Fu

ll
Fr

am
es

BR B MP P Q S SI
0

5

10

(a) 5 Trajectories (b) 160 Trajectories

Figure 3: Speedup of the end-to-end training procedure of the AE, VAE, and TT-based predictors compared
to a predictor trained using the full RGB frames. Extracting a latent space reduces end-to-end training time
in all cases. In the low data regime, using the TT-GPU leads to a 26.1× to 29.7× faster training time than
using the full RGB frames and a 8.2× to 9.6× speedup compared to the AE and VAE. In the moderate data
case (160 trajectories), using TT-GPU leads to a 3.4× to 9.8× faster training time compared to using the full
RGB frames and a 2.6× to 4.8× speedup compared to the AE and VAE. Note that the difference in speedups
between the 5 trajectory case and 160 trajectory case is due to the difference in training epochs used in each
case (50 in the 5 trajectory case and 5 in the 160 trajectory case); the speedups are similar when the number
of training epochs is held fixed while the number of training trajectories is changed, as shown in Appendix
A.5. BR:Beam Rider, B:Breakout, MP:Ms.Pacman, P:Pong, Q:Qbert, S:Seaquest, SI:Space Invaders.
.

This speedup comes with an improvement in reconstruction quality, as shown in Table 2; the TT leads to
a lower MSE and higher PSNR compared to the AE and VAE in six of the seven games. This speedup
also comes at no cost in terms of behavioral cloning accuracy (Figure 4a) and achieved gameplay scores
(Figure 5a), compared to training using encodings generated by an AE or VAE.

9



Under review as submission to TMLR

MSE PSNR
TT AE VAE TT AE VAE

BeamRider (BR) 6.3 30.5 47.6 46.8 35.3 33.0
Breakout (B) 33.0 67.6 80.9 39.4 32.9 30.3

MsPacman (MP) 27.1 58.0 103.3 38.7 32.5 28.9
Pong (P) 2.0 0.7 56.9 46.7 61.6 36.9
Qbert (Q) 6.8 33.5 68.5 45.6 34.3 30.8

Seaquest (S) 13.9 30.8 74.0 38.6 33.9 29.8
SpaceInvaders (SI) 80.3 144.5 176.4 32.4 28.4 26.2

Table 2: Reconstruction quality of the TT, AE, and VAE in the low data regime. The reported statistics are
MSE (using 255 as maximum pixel value) and PSNR of the reconstructions versus the original frames. For
each game, the bolded values are the smallest MSE and highest PSNR.

TT AE VAE No encoding

BR B MP P Q S SI0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

BR B MP P Q S SI

(a) 5 Trajectories (b) 160 Trajectories

Figure 4: Action prediction accuracies of trained predictors using encodings from the TT, AE, and VAE, as
well as a trained predictor using the full-sized original RGB frames. Training a predictor using TT encodings
yields similar and sometimes better prediction accuracies as training a predictor using AE or VAE encodings.
Error bounds are calculated as two times the standard error of gameplay scores calculated across ten (in the
5 trajectory case) or three (in the 160 trajectory case) experiments.

4.4.2 Moderate Data Regime

In the case where 160 trajectories are used for training data, we find once again that the TT-based predictor
provides a large speedup relative to the AE, VAE, and full frame predictors. In particular, as shown in
Figure 3, using the TT-encoder trained on GPU led to a 3.4× to 9.8× faster training time compared to
the no-encoding predictor. Compared to the AE and VAE, the end-to-end training time of the TT-based
predictor is 2.6× to 4.8× faster. Training the TT on CPU still usually leads to a speedup over the AE
and VAE on the GPU (0.9× to 2.9× faster), showing the computational efficiency of TT-ICE even on CPU
compared to GPU-based deep learning.

These results come with an improvement in reconstruction quality and no cost in terms of behavioral cloning
accuracy or gameplay scores. The reconstructions generated by the TT have lower error compared to
the reconstructions generated by the AE and VAE, as shown in Table 3. Furthermore, we find improved
behavioral cloning accuracy of the predictor trained using the TT encodings versus the predictors trained
on the AE or VAE encodings for some of the games, as seen in Figure 4b. The gameplay scores achieved by
each of the encoding methods is comparable, as shown in Figure 5b.

Note that in some games, the gameplay scores achieved by the predictors, including the one trained with
no encoding, are much lower than the scores achieved by the RL agent. This is likely due to an issue
encountered in imitation learning where the distribution of data used to train the agent differs from the
distribution of data encountered while testing the agent, since the agent’s actions directly affect the future
states it encounters. This leads to compounding errors and hurts the performance of the imitation learning
agent (Ross & Bagnell, 2010). These low scores are also consistent with Kanervisto et al. (2020), which

10



Under review as submission to TMLR

TT AE VAE No encoding

BR B MP P Q S SI-0.4
0

0.4
0.8
1.2

N
or

m
al

iz
ed

Sc
or

e

BR B MP P Q S SI

(a) 5 Trajectories (b) 160 Trajectories

Figure 5: Normalized gameplay scores achieved by each of the behavioral cloning models, trained using either
encodings from the TT, AE, VAE, or the original RGB images. A score of 0 corresponds to performance
of an agent taking random actions and a score of 1 corresponds to performance of the RL agent. Training
a predictor using TT encodings yields similar gameplay scores as training a predictor using AE or VAE
encodings. Error bounds are calculated as two times the standard error of gameplay scores calculated across
ten (in the 5 trajectory case) or three (in the 160 trajectory case) experiments. Please refer to the caption of
Figure 4 for the game abbreviations.

MSE PSNR
TT AE VAE TT AE VAE

BeamRider (BR) 0.4 18.0 26.0 58.1 37.6 36.4
Breakout (B) 1.2 7.8 19.8 51.0 40.1 36.8

MsPacman (MP) 1.7 16.2 75.7 48.1 37.6 30.2
Pong (P) 1.8 0.0 6.9 47.0 71.4 40.7
Qbert (Q) 0.8 12.1 36.4 52.7 39.0 33.8

Seaquest (S) 1.0 8.4 52.9 49.5 39.9 31.4
SpaceInvaders (SI) 0.4 18.5 80.2 56.1 36.5 30.1

Table 3: Reconstruction quality of the TT, AE, and VAE in the moderate data regime. The reported statistics
are the MSE (using 255 as maximum pixel value) and PSNR of the reconstructions versus the original frames.
For each game, the bolded values are the smallest MSE and highest PSNR.

found that behavioral cloning from human gameplay was unable to match human-level gameplay scores for
the Atari games considered in that paper.

4.4.3 Additional Results

Appendix A.2 demonstrates a more detailed investigation into the timing differences between the methods.
The speedups achieved by the TT compared to the AE and VAE are split into three components:

1. Time to train the encoder.

2. Time to encode training and validation data used to train the action predictor.

3. Time to train the action predictor.

These results show that the most time-intensive task is training the encoder. As such, reducing this training
time using a TT instead of a AE or VAE leads to a large reduction in overall training time. In Appendix A.3,
we look at the encoding time of the various models, since a faster encoding time leads to a faster inference
time. We find that the encoding time for TT-GPU is between 0.1× and 8.9× that of the AE and VAE in
the 5 trajectory case and between 1.5× and 8.9× that of the AE and VAE in the 160 trajectory case. The
time it takes to encode data is a drawback of using the TT, which is an area for future research. However,
even with the long encoding time, the overall time for training the TT on GPU is still much lower than that
of the AE and VAE since training the encoding is the most time-intensive task.

11



Under review as submission to TMLR

To ensure that our results are consistent across different settings, we also examine how changing the latent
space size (Appendix A.4) and the number of training trajectories (Appendix A.5) affects the training time
and action prediction accuracy of the AE, VAE, and TT. The results are consistent: we find that as the
latent space size and number of training trajectories are changed, TT achieves similar prediction accuracies
as the AE and VAE but provides a speedup in training time.

5 Conclusion

In this work, we have explored using tensor networks as a method for learning a low-dimensional represen-
tation of image data for behavioral cloning. In particular, we compare the computational speed of using TT
against AEs and VAEs for extracting this low dimensional representation, finding a 2.6× to 9.6× speedup
compared to AEs or VAEs. Furthermore, the TT encoding can be efficiently trained on CPU as well, which
leads to comparable or better training times than the AE and VAE trained on GPU (0.9× to 5.4× faster).
This speedup comes at no cost in terms of behavioral cloning accuracy or the gameplay scores achieved
by the behavioral cloned agents. As such, the TT-based approach enables learning while having limited
access to GPUs, as it allows for the expensive dimensionality reduction step to be performed on CPUs at a
comparable or faster time than using an AE or VAE on GPUs. Given the large computational requirements
of learning directly from video data, future work will aim to extend this methodology to tackling larger game
environments for which the large input space is a computational bottleneck.

References
Doruk Aksoy, David J Gorsich, Shravan Veerapaneni, and Alex A Gorodetsky. An incremental tensor train

decomposition algorithm. arXiv preprint arXiv:2211.12487, 2022.

Alexander Amini, Wilko Schwarting, Guy Rosman, Brandon Araki, Sertac Karaman, and Daniela Rus.
Variational autoencoder for end-to-end control of autonomous driving with novelty detection and training
de-biasing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
568–575. IEEE, 2018.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton,
Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching unlabeled online
videos. Advances in Neural Information Processing Systems, 35:24639–24654, 2022.

Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik Paul, Payam
Nikdel, Paul Mougin, Hongge Chen, et al. Hierarchical model-based imitation learning for planning in
autonomous driving. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 8652–8659. IEEE, 2022.

Daniel Brown, Russell Coleman, Ravi Srinivasan, and Scott Niekum. Safe imitation learning via fast bayesian
reward inference from preferences. In International Conference on Machine Learning, pp. 1165–1177.
PMLR, 2020.

Xiaoyu Cai, Qiongli Jing, Bo Peng, Yuanyuan Zhang, Yuting Wang, Ju Tang, et al. Automatic traffic state
recognition based on video features extracted by an autoencoder. Mathematical Problems in Engineering,
2022, 2022.

Brian Chen. Atari Games Dataset. https://deepblue.lib.umich.edu/data/concern/data_sets/
gq67jr854, 2023.

Brian Chen, Siddhant Tandon, David Gorsich, Alex Gorodetsky, and Shravan Veerapaneni. Behavioral
cloning in atari games using a combined variational autoencoder and predictor model. In 2021 IEEE
Congress on Evolutionary Computation (CEC), pp. 2077–2084. IEEE, 2021a.

Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H
Wang, Ping Luo, Stuart Russell, et al. An empirical investigation of representation learning for imitation.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021b.

12

https://deepblue.lib.umich.edu/data/concern/data_sets/gq67jr854
https://deepblue.lib.umich.edu/data/concern/data_sets/gq67jr854


Under review as submission to TMLR

Krzysztof Fonał and Rafał Zdunek. Distributed and randomized tensor train decomposition for feature
extraction. In 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ultimate tensorization: com-
pressing convolutional and FC layers alike. arXiv preprint arXiv:1611.03214, 2016.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A survey
of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Miguel Jaques, Michael Burke, and Timothy M Hospedales. Newtonianvae: Proportional control and goal
identification from pixels via physical latent spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4454–4463, 2021.

Anssi Kanervisto, Joonas Pussinen, and Ville Hautamäki. Benchmarking end-to-end behavioural cloning on
video games. In 2020 IEEE conference on games (CoG), pp. 558–565. IEEE, 2020.

Heecheol Kim, Yoshiyuki Ohmura, and Yasuo Kuniyoshi. Transformer-based deep imitation learning for
dual-arm robot manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 8965–8972. IEEE, 2021.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compression
of deep convolutional neural networks for fast and low power mobile applications. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. URL http://arxiv.org/abs/1511.06530.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings, 2014. URL http://arxiv.org/abs/1312.6114.

Jean Kossaifi, Aran Khanna, Zachary Lipton, Tommaso Furlanello, and Anima Anandkumar. Tensor con-
traction layers for parsimonious deep nets. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 26–32, 2017.

Jean Kossaifi, Zachary C Lipton, Arinbjorn Kolbeinsson, Aran Khanna, Tommaso Furlanello, and Anima
Anandkumar. Tensor regression networks. Journal of Machine Learning Research, 21(123):1–21, 2020.

V Lebedev, Y Ganin, M Rakhuba, I Oseledets, and V Lempitsky. Speeding-up convolutional neural networks
using fine-tuned cp-decomposition. In 3rd International Conference on Learning Representations, ICLR
2015-Conference Track Proceedings, 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

Angshul Majumdar. Blind denoising autoencoder. IEEE transactions on neural networks and learning
systems, 30(1):312–317, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

13

https://github.com/hill-a/stable-baselines
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1312.6114


Under review as submission to TMLR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural networks.
Advances in neural information processing systems, 28, 2015.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman,
Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wol-
ski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. 2019. URL https:
//arxiv.org/abs/1912.06680.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317,
2011.

Jyothish Pari, Nur Muhammad, Sridhar Pandian Arunachalam, Lerrel Pinto, et al. The surprising effective-
ness of representation learning for visual imitation. Robotics: Science and Systems XVIII, 2021.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising effec-
tiveness of pre-trained vision models for control. In International Conference on Machine Learning, pp.
17359–17371. PMLR, 2022.

Emmanuel Pintelas, Ioannis E Livieris, and Panagiotis E Pintelas. A convolutional autoencoder topology
for classification in high-dimensional noisy image datasets. Sensors, 21(22):7731, 2021.

Marsela Polic, Ivona Krajacic, Nathan Lepora, and Matko Orsag. Convolutional autoencoder for feature
extraction in tactile sensing. IEEE Robotics and Automation Letters, 4(4):3671–3678, 2019.

Antonin Raffin. Rl baselines zoo. https://github.com/araffin/rl-baselines-zoo, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR Workshop and
Conference Proceedings, 2010.

Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey Levine. Time-contrastive networks: Self-supervised
learning from multi-view observation. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 486–487. IEEE, 2017.

Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In International
Conference on Machine Learning, pp. 9465–9476. PMLR, 2021.

Manish Sharma, Panos P Markopoulos, Eli Saber, M Salman Asif, and Ashley Prater-Bennette. Con-
volutional auto-encoder with tensor-train factorization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 198–206, 2021.

Hao Shen, Weikang Wan, and He Wang. Learning category-level generalizable object manipulation policy
via generative adversarial self-imitation learning from demonstrations. IEEE Robotics and Automation
Letters, 7(4):11166–11173, 2022.

K Sreelakshmi and Renjith V Ravi. An encryption-then-compression scheme using autoencoder based image
compression for color images. In 2020 7th International Conference on Smart Structures and Systems
(ICSSS), pp. 1–5. IEEE, 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from
reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879. PMLR, 2021.

14

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://github.com/araffin/rl-baselines-zoo


Under review as submission to TMLR

Mojtaba Taherisadr, Mohsen Joneidi, and Nazanin Rahnavard. Eeg signal dimensionality reduction and
classification using tensor decomposition and deep convolutional neural networks. In 2019 IEEE 29th
International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Tianyu Wang, Nikhil Karnwal, and Nikolay Atanasov. Latent policies for adversarial imitation learning.
arXiv preprint arXiv:2206.11299, 2022.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neurocomputing,
184:232–242, 2016.

Xuewen Yang, Yingru Liu, and Xin Wang. Reformer: The relational transformer for image captioning. In
Proceedings of the 30th ACM International Conference on Multimedia, pp. 5398–5406, 2022.

Jianbo Yu and Xingkang Zhou. One-dimensional residual convolutional autoencoder based feature learning
for gearbox fault diagnosis. IEEE Transactions on Industrial Informatics, 16(10):6347–6358, 2020.

Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using higher order
tensor rnns. arXiv preprint arXiv:1711.00073, 2017a.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 7370–7379, 2017b.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu. Pre-trained
image encoder for generalizable visual reinforcement learning. Advances in Neural Information Processing
Systems, 35:13022–13037, 2022.

Jaime Zabalza, Jinchang Ren, Jiangbin Zheng, Huimin Zhao, Chunmei Qing, Zhijing Yang, Peijun Du, and
Stephen Marshall. Novel segmented stacked autoencoder for effective dimensionality reduction and feature
extraction in hyperspectral imaging. Neurocomputing, 185:1–10, 2016.

Wenjie Zhang, Jiqing Han, and Shiwen Deng. Heart sound classification based on scaled spectrogram and
tensor decomposition. Expert Systems with Applications, 84:220–231, 2017.

Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Tth-rnn: Tensor-train hierarchical recurrent neural network for
video summarization. IEEE Transactions on Industrial Electronics, 68(4):3629–3637, 2020.

Appendix

A Additional Details on Training

A.1 Feature Extraction Step

Architectural details for the encoding part of our AEs and VAEs are laid out in Table 4. The decoding
portion of these networks mirrors the encoding portion, with convolutional layers replaced by transposed
convolutional layers.

The AEs and VAEs are hyperparameter tuned individually for each game over initial learning rates of
10−2, 10−3, and 10−4 and L2 weight decay penalties of 1, 10−2, and 10−4, after which the best model is
selected based on validation error and used for encoding. The networks are trained using the Adam-W
optimizer (Loshchilov & Hutter, 2018) with cosine learning rate decay without restarts (Loshchilov & Hutter,
2016) for fifty epochs in the low data case and five epochs in the moderate data case. The AE is trained to
minimize reconstruction error measured via mean squared error while the VAE is trained using the standard

15



Under review as submission to TMLR

Table 4: Architecture for the encoding part of AEs and VAEs. After each intermediate layer we also apply
batch norm followed by LeakyReLU - these are excluded from the table for simplicity. The asymmetric padding
in the first layer is to account for the shape of the input.

Layer Layer Inp. Out. Kernel Stride Padding# Type Ch. Ch. Size
1 Conv 3 32 3 2 (4, 1)
2 Conv 32 64 3 2 (1, 1)
3 Conv 64 64 3 2 (1, 1)
4 Conv 64 16 1 1 (0, 0)
5 Flatten - - - - -
6 Linear - - - - -

ELBO loss (Kingma & Welling, 2014). An additional 1 or 20 trajectories (in the limited and moderate data
regimes, respectively) are used as a validation set in order to hyperparameter tune the networks. Note that
the TT does not require this step of validation and does not use this additional data.

A.2 Breakdown of Speedups

In Figures 6 and 7, we further break down the timings for training the AE, VAE, and TT-based predictors
as follows:

• Training the encoder: For the AE and VAE, this time is the total time required to perform a
hyperparameter optimization by training nine AEs / VAEs with different network hyperparameters
and selecting one based on the validation loss measured on a separate validation set. Recall that
TT encoder does not require such a procedure. For the TT, this is the time required to perform the
TT decomposition (using TT-ICE∗ ) to extract the latent space representation of the input data.

• Encoding data: Time to pass all the training and validation data through the AE, VAE, and TT
in order to extract latent space representations.

• Training the action predictor: Time to train the action predictor on the encodings extracted
in the previous step. The architecture of the predictor is same across all three methods. For each
model and for each game, nine predictors are trained using different initial learning rates (10−2,
10−3, and 10−4) and L2 regularization penalties (1, 10−2, and 10−4). The predictor yielding the
lowest cross-entropy action prediction loss measured on another separate validation set is selected.

Note that the most time-intensive task is training the encoding. As such, reducing the time it takes to train
the encoding by using a TT instead of an AE or VAE leads to a significant reduction in overall training time.

A.3 Encoding Times

Encoding times of the various models are compared in Table 5. In the 5 trajectory case, the encoding time
for TT-GPU is between 0.1× and 8.9×. In the 160 trajectory case, the encoding time for TT-GPU is between
1.5× and 8.9× that of the AE and VAE. An area of future work will be to reduce the encoding times required
for the TT, since this affects the inference times of these models.

A.4 Effect of Changing Epsilon

We conduct experiments testing the effect of changing the size of the latent space for the TT, AE, and VAE.
In our experiments, the latent size of the AE and VAE is set up to match the latent size of the TT. In Table
6, the latent size as epsilon is changed is displayed.

In Figure 8, the effect of changing epsilon / the latent size on prediction accuracy is displayed. The general
pattern appears to be that decreasing epsilon / increasing the latent size leads to a higher prediction accuracy,

16



Under review as submission to TMLR

Training the Encoder Encoding Data Training the Predictor
A

E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0

0.2

0.4

0.6

0.8

1

0.
30

0.
32

0.
09

0.
03

Beam Rider

R
el

.
ti

m
e

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
32

0.
32

0.
07

0.
04

Breakout

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
32

0.
33

0.
10

0.
04

Ms.Pacman

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
30

0.
31

0.
06

0.
03

Pong

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
31

0.
32

0.
09

0.
03

Qbert

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
30

0.
32

0.
09

0.
03

Seaquest

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
33

0.
33

0.
09

0.
03

Space Invaders

Figure 6: Time for end-to-end training procedure in the limited data regime, averaged across all experiments,
as a fraction of the time required to train the full-frame predictor. Extracting a latent space before training
a predictor reduces end-to-end training time in all cases, but using the TT-GPU leads to a 26.1× to 29.7×
reduction in training time. Compared to the AE / VAE, using the TT-GPU leads to a 8.2× to 9.6× speedup.

5 Trajectories 160 Trajectories
AE VAE TT-CPU TT-GPU AE VAE TT-CPU TT-GPU

BeamRider 3.8 3.8 160.8 8.3 152.5 138.4 2373.0 682.2
Breakout 8.6 1.0 30.9 0.9 31.1 26.1 247.5 55.7

MsPacman 2.8 2.8 115.3 25.2 91.3 92.0 1469.5 488.2
Pong 13.0 12.4 481.6 3.1 453.9 433.9 3723.4 685.0
Qbert 1.9 1.9 67.1 7.4 60.5 60.0 641.2 122.3

Seaquest 3.3 3.2 131.6 3.0 127.1 130.7 2035.8 642.1
SpaceInvaders 1.8 1.8 66.0 7.1 76.3 71.2 1545.3 635.4

Table 5: Time to encode the training and validation data in seconds using the various encodings. In the 5
trajectory case, the encoding time for TT-GPU is between 0.1× and 8.9× that of the AE and VAE. In the
160 trajectory case, the encoding time for TT-GPU is between 1.5× and 8.9× that of the AE and VAE.

Epsilon 0.01 0.02 0.05 0.10 0.15
BeamRider 14645 9867 3324 297 72
Breakout 3561 957 50 18 3

MsPacman 11962 6421 867 15 2
Pong 1287 138 4 1 1
Qbert 2267 1560 308 43 10

Seaquest 15163 8170 1338 37 1
SpaceInvaders 17191 13795 8035 3994 2097

Table 6: Latent size as epsilon for the TT is changed. The reported numbers are an average across three
seeds (which use different training data).

17



Under review as submission to TMLR

Training the Encoder Encoding Data Training the Predictor

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0

0.2

0.4

0.6

0.8

1
0.

67

0.
78

0.
46

0.
19

Beam Rider

R
el

.
ti

m
e

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
47

0.
50

0.
32

0.
14

Breakout
A

E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
61

0.
73

0.
41

0.
18

Ms.Pacman

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
39

0.
41

0.
14

0.
10

Pong

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
40

0.
42

0.
21

0.
10

Qbert

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
68

0.
83

0.
42

0.
17

Seaquest

A
E

V
A

E

T
T

-C
P

U

T
T

-G
P

U

0.
77

0.
91

0.
87

0.
30

Space Invaders

Figure 7: Time for the end-to-end training procedure in the moderate data regime, averaged across all
experiments, as a fraction of the time it takes to train a predictor using the full RGB frames. Extracting
a latent space reduces end-to-end training time in all cases, but using TT-GPU leads to a 3.4× to 9.8×
reduction in training time compared to no encoding and a 2.6× to 4.8× speed up relative to the AE / VAE.

AE VAE TT No encoding

0.
15

0.
10

0.
05

0.
02

0.
01

20

40

60

80

100

A
ct

io
n

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Beam Rider

0.
15

0.
10

0.
05

0.
02

0.
01

Breakout

0.
15

0.
10

0.
05

0.
02

0.
01

Ms.Pacman

0.
15

0.
10

0.
05

0.
02

0.
01

ε

Pong

0.
15

0.
10

0.
05

0.
02

0.
01

Qbert

0.
15

0.
10

0.
05

0.
02

0.
01

Seaquest

0.
15

0.
10

0.
05

0.
02

0.
01

SpaceInvaders

Figure 8: Action prediction accuracy of behavioral cloning frameworks using different encoding methods at
varying ε levels. As the latent space size is increased for the encoding-based predictors, the action prediction
accuracy of the predictors tends to increase. The speedup offered by TT does not cause any performance
deterioration. Furthermore, the nonlinearity offered by AE/VAE does not result in an improved latent space
representation that achieves higher action prediction accuracy with a smaller latent space. Since Pong with
ε = 0.15 and ε = 0.10 returns the same latent size, the accuracy for ε = 0.15 is omitted. Please refer to
Table 6 for latent space sizes of ε levels for each different game.

as expected. However, for some games, increasing the latent space size past a certain point leads to small
or negligible improvements in prediction accuracy. The effect of changing the latent space size on timings
is shown in Figure 9. Using a larger latent space size tends to increase the end-to-end training time of the
models. These results are consistent with our findings in the main text - at the different epsilon levels tested,
the TT-based predictor yielded similar prediction accuracies as the AE and VAE, while being faster to train.

A.5 Effect of Number of Trajectories in Training Data

We also run a small study to examine the effect of increasing the number of gameplay trajectories used
to train the behavioral cloning framework on both training time and prediction accuracy. We ran this for
the game of Seaquest, given the relatively low prediction accuracies we achieved compared to some of the
other Atari games. As expected, Figure 10 shows that the accuracy increases as more training data is used,
suggesting that better prediction accuracies can be achieved with more data.

18



Under review as submission to TMLR

AE VAE TT-CPU TT-GPU No encoding
0.

15

0.
10

0.
05

0.
02

0.
01

102

103

104

105

To
ta

lT
ra

in
in

g
T

im
e

(s
)

Beam Rider

0.
15

0.
10

0.
05

0.
02

0.
01

Breakout

0.
15

0.
10

0.
05

0.
02

0.
01

Ms.Pacman

0.
15

0.
10

0.
05

0.
02

0.
01

ε

Pong

0.
15

0.
10

0.
05

0.
02

0.
01

Qbert

0.
15

0.
10

0.
05

0.
02

0.
01

Seaquest

0.
15

0.
10

0.
05

0.
02

0.
01

SpaceInvaders

Figure 9: Total time elapsed to train behavioral cloning frameworks using different encoding methods at
varying ε levels. As the latent space size increases, the total training time for the various encoding-based
predictors increases. Across all games and ε levels, TT-GPU encoding offers the fastest end-to-end training
time. Please refer to Table 6 for latent space sizes of ε levels for each different game.

AE VAE TT-CPU TT-GPU No encoding

40 80 120 160
0

2

4

6

Number of Trajectories

Sp
ee

du
p

vs
.

N
o

E
nc

od
in

g

40 80 120 160
0

20

40

60

80

100

Number of Trajectories

A
ct

io
n

P
re

di
ct

io
n

A
cc

ur
ac

y
%

(a) Speedup (b) Action Prediction Accuracy

Figure 10: Results of the experiments investigating the effect of number of trajectories used to train the be-
havioral cloning framework on computational speedup and action prediction accuracy using different encoding
methods for the game of Seaquest. As number of training trajectories increase, action prediction accuracy
gets higher. Computational benefits of TT-ICE∗ over the AE, VAE, or no encoding remain similar across
different number of trajectories. Action prediction accuracies are only presented for TT-CPU since TT-CPU
and TT-GPU result in the same latent space.

19



Under review as submission to TMLR

We note that TT’s speedup over the AE / VAE and no encoding remains similar as more data is used, as long
as the number of training epochs is fixed. These results suggest that the timing advantage may remain for
the TT even when more data is available for behavioral cloning. Note that we did not see similar speedups
in Figure 3 between the 5 trajectory and 160 trajectory case, as the number of epochs used to train the AEs
/ VAEs was not fixed; we used 50 epochs in the 5 trajectory case and 5 epochs in the 160 trajectory case.

20


	Introduction
	Related Work
	Methodology
	Frame Encoder
	Autoencoder
	Variational Autoencoder
	Tensor-Train (TT) Format

	Mapping unseen data to latent space
	Action predictor

	Experiments
	Dataset
	Setup
	Metrics
	Results
	Limited Data Regime
	Moderate Data Regime
	Additional Results


	Conclusion
	Additional Details on Training
	Feature Extraction Step
	Breakdown of Speedups
	Encoding Times
	Effect of Changing Epsilon
	Effect of Number of Trajectories in Training Data


